Nonlinear Estimation to Assimilate GPS TEC Data into a Regional Ionosphere Model

نویسندگان

  • Mark L. Psiaki
  • Cathryn N. Mitchell
چکیده

A new method of is being developed to estimate the ionosphere’s 3-dimensional electron density distribution based on GPS slant TEC data. The goal of this effort is to develop a generalized parametric ionospheric model that is amenable to data assimilation using powerful nonlinear least-squares batch filtering techniques and related techniques. In addition to assimilating GPS TEC data, this method will eventually be targeted at assimilating additional data types in order to implement true data fusion for ionospheric characterization. The parameterized ionosphere model uses a latitude/longitude bi-quintic spline model to characterize the horizontal variations of parameters of a vertical electron density profile. The result is a truly 3-dimensional electron density distribution. It is parameterized by vertical profile parameter values at latitude/longitude spline nodes and by various latitude and longitude partial derivatives of these parameters at the nodes. This electron density distribution is used in conjunction with quadrature numerical integration to determine slant TEC along line-of-sight paths to tracked GPS satellites. A nonlinear batch estimation algorithm compares the modeled GPS slant TEC values predicted by its current parameter estimates with corresponding measured values. It then updates its parameter estimates to improve its fit to the measurements while balancing a need to use parameters that remain relatively near reasonable a priori values, as dictated by an International Reference Ionosphere calculation. A truth-model simulation study shows that the vertical TEC map is observable as part of a latitude/longitude-dependent Chapman profile. The height of peak electron density and the scale height of the Chapman profile are only weakly observable from slant TEC data alone. Tests of this method have also been made with slant TEC data from an array of over 900 dualfrequency GPS receivers distributed over the continental U.S. The method demonstrates an equal or better ability to predict slant TEC at other GPS receivers than that of a traditional thin-shell, fixed-altitude ionosphere data assimilation model like the one used for WAAS. Copyright © 2015 by Mark L. Psiaki, Gary S. Bust, and Cathryn N. Mitchell. All rights reserved. Preprint from ION GNSS+ 2015

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iranian Permanent GPS Network Receivers Differential Code Biases Estimation Using Global Ionospheric Maps

Measurements of the dual frequency Global Positioning System (GPS) receivers can be used to calculate the electron density and the total electron content (TEC) of the ionosphere layer of the Earth atmosphere. TEC is a key parameter for investigating the ongoing spatial and temporal physical process of the ionosphere. For accurate estimation of TEC from GPS measurements, GPS satellites and GPS r...

متن کامل

Evaluation of the Efficiency of the Adaptive Neuro Fuzzy Inference System (ANFIS) in the Modeling of the Ionosphere Total Electron Content Time Series Case Study: Tehran Permanent GPS Station

Global positioning system (GPS) measurements provide accurate and continuous 3-dimensional position, velocity and time data anywhere on or above the surface of the earth, anytime, and in all weather conditions. However, the predominant ranging error source for GPS signals is an ionospheric error. The ionosphere is the region of the atmosphere from about 60 km to more than 1500 km above the eart...

متن کامل

RIMT: A tool for Regional Ionospheric Mapping and Tomography using GPS data

The ionosphere is about 60-1000 km above the earth’s surface, which is actually plasma of ionized gas of the upper atmosphere by solar radiation and high-energy particles from the Sun. The ionized electrons concentrations change with height above earth’s surface, location, time of the day, season, and amount of solar activity. The total electron content (TEC) and electron density profiles are t...

متن کامل

Correction of single frequency altimeter measurements for ionosphere delay

-This study is a preliminary analysis of the accuracy of various ionosphere models to correct single frequency altimeter height measurements for ionospheric path delay. In particular, research focused on adjusting empir/cal and parameterized ionosphere models in the parameterized real-time ionospheric specification modal (PRISM) 1.2 using total electron content (TEC) data from the global positi...

متن کامل

Incorporation of UV Radiances Into the USU GAIM Models

The primary USU data assimilation model is the Full Physics Kalman Filter (FPKF) model. It provides specifications and forecasts on a spatial grid that can be global, regional, or local. It uses a physicsbased ionosphere-plasmasphere-polar wind model and a Kalman filter as a basis for assimilating a diverse set of real-time (or archived) measurements, and it is capable of assimilating in situ a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015